> 自媒体 > AI人工智能 > chatgpt3中文生成模型原理-chatgpt中文生成教程
chatgpt3中文生成模型原理-chatgpt中文生成教程
来源:一四七SEO
2023-09-13
294
管理

GPT-3(Generative Pre-trained Transformer 3)是一种自然语言处理模型,由OpenAI研发而成。它是GPT系列模型的第三代,也是目前最大、最强大的自然语言处理模型之一,集成了1750亿个参数,具有广泛的使用场景,能够执行多种自然语言处理任务,包括文本生成、机器翻译、对话生成、摘要生成等。

在论文《Language Models are Unsupervised Multitask Learners》中,GPT-2(Generative Pre-trained Transformer 2)获得了出色的性能表现。虽然GPT-2最开始是基于英文数据训练的,但是经过一些研究后,可以将它应用到中文的文本生成任务上。以下是一个简单的中文生成教程:

准备数据集:为了训练GPT-2中文模型,需要一个中文文本数据集。可以使用网络爬虫从中文网站和论坛上收集数据,也可以从中文维基百科和其他开放数据源上获取数据。收集到数据后,需要进行清洗和预处理,如去重、分词等操作,以便给模型提供正确的输入。安装GPT-2模型代码库:使用Python语言并安装GPT-2模型代码库,例如使用 Hugging Face 的 transformers 库来安装模型代码库。还需要安装其他必要的Python包和依赖项。 下面是示例代码:

pip install transformers预训练GPT-2中文模型:使用下面的代码来预训练GPT-2中文模型。该代码将训练一个基于GPT-2的中文文本生成模型。此外,您还可以调整一些超参数,如batch size,learning rate等,以提高模型性能。

from transformers import GPT2LMHeadModel, GPT2Tokenizerimport torchtokenizer = GPT2Tokenizer.from_pretrained('gpt2')model = GPT2LMHeadModel.from_pretrained('gpt2')#### Add the Chinese vocabulary to the tokenierf = open('中文词汇.txt','r',encoding='utf-8')vocab_cn_list = []for line in f.readlines(): vocab_cn_list.append(line.strip())tokenizer.add_tokens(vocab_cn_list)array = [vocab_cn_list.index('。'),tokenizer.eos_token_id,tokenizer.sep_token_id]special_tokens_dict = {'additional_special_tokens': ['', ''] vocab_cn_list[array[0]:array[-1] 1]}tokenizer.add_special_tokens(special_tokens_dict)model.resize_token_embeddings(len(tokenizer))###inputs = tokenizer("我想", return_tensors="pt")outputs = model.generate(inputs['input_ids'], max_length=50, do_sample=True)text = tokenizer.decode(outputs[0])print(text)

1
点赞
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与华威派无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非华威派)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:2443165046 邮箱:info@goodmaoning.com
关于作者
锦阳(普通会员)
点击领取今天的签到奖励!
签到排行
1
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索