整理 | 屠敏
出品 | CSDN(ID:CSDNnews)
比 ChatGPT 背后 GPT-3.5 更为强大的模型 GPT-4,已在上周正式对外发布。在 OpenAI 官方发布的 GPT-4 Developer Livestream(https://www.youtube.com/watch?v=outcGtbnMuQ)视频中,我们亲眼见证了 OpenAI CTO Greg Brockman 演示了 GPT-4 将一张手绘草稿架构图变成一个现实可滑动的网站;同时,它也能帮助我们直接生成代码,甚至当我们把代码运行报错的界面截一个图发给 GPT-4 时,它就能给出相应的解决方案提示。
这种直接对标程序员饭碗的工具,在日常开发场景下,生成的代码是否真的可用?如果说 ChatGPT 达到了 Google L3 级别工程师,能拿到 18.3 万美元的薪资,那么 GPT-4 处于一个什么样的编码地位?
近日,前 Google 软件开发工程师、现任 IT 在线学习平台 Scaler 的教学系统设计师 Naman Bhalla 模拟了 GPT-4 去参加 Uber 这类公司面试会遇到的问题,其以“设计一个分布式缓存系统”为主题,探讨 GPT-4 在面试环节中的表现情况。
当然,在这过程中,站在程序员的角度来看,想要 GPT-4 生成的代码即可用,首先要看得懂这些代码,知道分布式缓存系统实现的具体逻辑,否则,缺失哪一块都不知道,更别论拿着代码去运行了。
不过,它并没有写最后一个关于 prefetching 的测试用例。因为它的逻辑没有被定义。为此,GPT-4 提供了一些建议,如「你需要在 DistributedCache 类中实现 prefetchKeys 方法,该方法根据给定的键生成一个 prefetch 的键列表。一旦你实现了这个方法,你就可以添加一个测试案例来验证 prefetch 是否按预期工作。」
承接上文,Naman Bhalla 建议 GPT-4 还是自己直接给出一个自定义 prefetch 的示例。不出意料,GPT-4 照做了,然后实现了测试。
然而,当要求 GPT-4 实现对给定线程的密钥请求的粘性,以确保没有一致性问题。
GPT-4 答复道:“为了确保每个键的请求都进入同一个线程,你可以在 CacheNode 类中使用`ExecutorService`创建一个线程池。每个键将根据其散列代码被散列到一个特定的线程,以确保对一个特定键的所有操作都由同一个线程执行。”
事实上,它提出了一个非最佳的 ExecutorService,但告诉 Naman Bhalla 最佳的解决方案是什么,并且也进行了编码。
当 Naman Bhalla 要求 GPT-4 修复这个问题时,“它似乎已经疯了”,Naman Bhalla 无奈地说道。
因为,GPT-4 不仅没有修复上面的问题,反而又创建了一个新的 Cache 类,它基本上在做与 CacheNode 相同的工作。Naman Bhalla 称,最初认为 GPT-4 这样做可能是为了提高代码质量。但似乎它已经开始忘记上文了,再次定义了许多先前已经定义的类。
最终,GPT-4 虽然犯了一些错误,但在提示下得到了修复。修复完成之后,Naman Bhalla 又要求 GPT-4 再写一些测试用例来全面测试。特别是针对并发请求。但由于 GPT-4 已经开始失去上文背景,所以它不可避免地又犯了错误,Naman Bhalla 不得不告诉它之前写的代码。
几经折腾,GPT-4 终于实现了正确的测试用例:
相关文章
猜你喜欢