> 自媒体 > AI人工智能 > OpenAI用GPT-4解释了GPT-2三十万个神经元:智慧原来是这个样子
OpenAI用GPT-4解释了GPT-2三十万个神经元:智慧原来是这个样子
来源:机器之心Pro
2023-05-18
188
管理

机器之心报道

机器之心编辑部

这就是 GPT 的「抽象」,和人类的抽象不太一样。

虽然 ChatGPT 似乎让人类正在接近重新创造智慧,但迄今为止,我们从来就没有完全理解智能是什么,不论自然的还是人工的。

认识智慧的原理显然很有必要,如何理解大语言模型的智力?OpenAI 给出的解决方案是:问问 GPT-4 是怎么说的。

5 月 9 日,OpenAI 发布了最新研究,其使用 GPT-4 自动进行大语言模型中神经元行为的解释,获得了很多有趣的结果。

给定一个 GPT-2 神经元,通过向 GPT-4 展示相关文本序列和激活来生成对其行为的解释。

模型生成的解释:对电影、角色和娱乐的引用。

步骤二:使用 GPT-4 进行模拟

再次使用 GPT-4,模拟被解释的神经元会做什么。

看起来,GPT 理解的概念和人类不太一样?

OpenAI 未来工作

目前,该方法还存在一些局限性,OpenAI 希望在未来的工作中可以解决这些问题:

该方法专注于简短的自然语言解释,但神经元可能具有非常复杂的行为,因而用简洁地语言无法描述;

OpenAI 希望最终自动找到并解释整个神经回路实现复杂的行为,神经元和注意力头一起工作。目前的方法只是将神经元的行为解释为原始文本输入的函数,而没有说明其下游影响。例如,一个在周期(period)上激活的神经元可以指示下一个单词应该以大写字母开头,或者增加句子计数器;

OpenAI 解释了神经元的这种行为,却没有试图解释产生这种行为的机制。这意味着即使是得高分的解释在非分布(out-of-distribution)文本上也可能表现很差,因为它们只是描述了一种相关性;

整个过程算力消耗极大。

最终,OpenAI 希望使用模型来形成、测试和迭代完全一般的假设,就像可解释性研究人员所做的那样。此外,OpenAI 还希望将其最大的模型解释为一种在部署前后检测对齐和安全问题的方法。然而,在这之前,还有很长的路要走。

参考内容:

https://openai.com/research/language-models-can-explain-neurons-in-language-models

https://news.ycombinator.com/item?id=35877402

https://www.reddit.com/r/MachineLearning/comments/13d4b3o/language_models_can_explain_neurons_in_language/

https://techcrunch.com/2023/05/09/openais-new-tool-attempts-to-explain-language-models-behaviors/

0
点赞
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与华威派无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非华威派)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:2443165046 邮箱:info@goodmaoning.com
关于作者
杨子(普通会员)
点击领取今天的签到奖励!
签到排行
0
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索