> 自媒体 > AI人工智能 > 清华唐杰:GPT-3表示能力已接近人类了,但它有阿喀琉斯之踵
清华唐杰:GPT-3表示能力已接近人类了,但它有阿喀琉斯之踵
来源:量子位
2023-09-12
355
管理

编辑部 整理自 MEET 2021 量子位 报道 | 公众号 QbitAI

人工智能,现在发展到什么阶段了?

从发展脉络上看,从符号智能、感知智能,现在应该到认知智能阶段了。

或者说,我们正走在认知智能的路上。

今年大火的GPT-3,其参数量已然达到了千亿级别,规模已经接近人类神经元的数量了。

这说明,GPT-3的表示能力已经接近人类了,但它仍有一些认知局限——没有常识。

那我们何时、又将如何走向认知智能?

未来计算机的认知能力,能否超过人类?

什么样的模型可以驱动未来的认知AI?

认知智能的概念是否又该重新定义?

……

在MEET 2021 智能未来大会现场,清华大学计算机系教授、系副主任唐杰用简单、通俗的例子为我们一一解答。

从最早的符号智能,再到后面的感知智能。最近,所有人都在谈论认知智能。

我们现在需要探讨“计算机有没有认知”、“计算机能不能做认知、推理”、“计算机到未来有没有意识,能够超过人类”这些问题。

人工智能发展到现在已经有三个浪潮,我们把人工智能叫做三个时代分别是符号 AI、感知 AI 和认知 AI,现在正处在实现认知AI的路上。

具体如何实现呢?

我认为需要一些基础性的东西,比如里面的认知图谱怎么构建,里面认知的一些逻辑,包括认知的基础设施怎么建,这也是我们特别想做的一件事情。

回顾机器学习的发展历程,首先想到的就是很多分类模型,比如决策树,贝叶斯、神经网络……

与此同时,也暴露出另一个痛点——成本问题。

GPT-3,如果用单卡的训练需要355年,整个训练成本将达到几亿人民币,一般的公司是做不起来的。

但就算是有互联网巨头愿意去做,大家是不是都可以用了?

GPT-3有个阿喀琉斯之踵

不着急。先来看看这样一个例子,左边是GPT-3模型,右边是结果。

当时的概念是,我们利用大量的数据能不能建一个图谱?于是在未来的搜索中,可以自动把搜索结果结构化,自动的结构化的数据反馈出来。

知识图谱不仅可以应用到搜索引擎,还可以给计算机带来一些常识性的知识。

因此,我们是否可以通过这一方法来帮助未来的计算呢?

「数据 知识」驱动未来的认知AI

其实,知识图谱在很多年前就已经发展起来。

从第一代人工智能——符号AI的时候,就已经开始在做,当时将知识图谱定义为“符号 AI 的逻辑表示”。

但到现在也还没有大规模的发展起来,主要有几个方面的原因。

第一,构建的成本非常的高。

CYC,最早的知识图谱之一,负责定义知识断言。

简单来说就是,一个ABC三元组,A 就是主体,B 就是关系,C是受体。

比如,人有手,人就是主体,有就是关系,手就是受体。

这么一个简单的问题,成本就在5.7 美元。

第二,自动构建精度很低。

另一个典型的知识图谱NELL,互联网完全自动方法的生成出来,但错误率一下子提高到10倍。

这两个项目目前基本上都处于半停滞状态。

于是,我们现在就在思考,若是将上述两种方式结合在一起,是否能够驱动认知AI?

第一,从大数据的角度,做数据驱动。用深度学习举十反一的方法,把所有的数据进行建模,并且学习数据之间的关联关系,学习数据的记忆模型。

第二,我们要用知识驱动,构建一个知识图谱,用知识驱动整个事情。

我们把两者结合起来,这也许是解决未来认知 AI 的一个关键。

当然这些也还不够。我们的未来是需要构建一个真正能够超越原来的、已有模型的一个认知模型。

我们需要一个全新的架构框架,也需要一个全新的目标函数,这时候才有可能超过这样的预训练模型,否则就是在跟随 GPT-3。

而放在眼下要做的,就是让机器有一定的创造能力,光文本还不够,我们希望创造出真正的图片,它是创造,不是查询。

比如,机器可以通过文字,将原有的图片生成新的图片。

当然,光创造还不够,我们离真正通用的人工智能还有多远?

我们希望真正的通用人工智能有持续学习的能力,能够从已有的事实,从反馈中学习到新的东西,能够完成一些更加复杂的任务。

认知AI的九准则

这时候,再回到起初最基本的问题:什么叫认知?

只要有可持续学习的能力就是认知吗?

如果这样的话,GPT-3也有持续学习的能力,知识图谱也有学习的能力,因为它在不停的更新。

如果能完成一些复杂任务就是认知吗?

也不是,我们已经有些系统已经可以完成非常复杂的问题。

那什么是认知呢?

最近,通过我们的一些思考,定义了认知 AI 的九准则。这九个准则是我从人的认知和意识中抽象出来的九个准则。

第一个,叫适应与学习能力。

比如说今天MEET 大会,机器人自动学习,可以知道在这个特定的场景下应该做什么事情。

第二个,叫定义与语境能力。

模型能够在特定语境下感知上下文,对环境有一定的感知能力。

第三个,叫自我系统的准入能力。

机器能够自定义什么是我,什么是非我,这叫人设。如果这个机器能知道自己的人设是什么,那么我们认为它有一定的认知能力。

第四个,优先级与访问控制能力。

在一定的特定场景下它有选择的能力。我们人都可以在双十一选择购物,如果机器在双十一的时候能选择我今天想买点东西,明天后悔了,不应该买。

这时候机器有一定的优先级和访问控制。

第五个,召集与控制能力。这个机器应该有统计和决策的能力。

第六个,决策与执行能力,机器人在感知到所有的数据以后可以做决策。

第七个,错误探测与编辑能力。

这个非常重要,人类的很多知识都在试错中发现的。比如现在学的很多知识,我们并不知道什么知识是最好的。

我们需要不停的试错,也许我们今天学到了1 1=2 是很好,但是你尝试1 1=3,1 1=0,是不是也可以呢?你尝试完了发现都不对,这叫做错误探测与编辑,让机器具有这个能力,非常地重要。

第八个,反思与自我控制、自我监控。

如果这个机器人在跟你聊天的过程中,聊了很久,说“不好意思我昨天跟你说的一句话说错了,我今天纠正了。”这时候机器具有反思能力。

最后,这个机器一定要有条理和理性。

一个面向认知的AI架构

在九个准则的基础上,我们提出了一个全新的认知图谱的概念。

主要有三个核心要素。

第一个,常识图谱,这与知识图谱的几个要素非常相关。比如说高精度知识图谱的构建、领域知识图谱的应用系统、超大规模知识图谱的构建,还有基于知识图谱的搜索和推荐,这是传统的一些东西。

第二个,逻辑生成。这需要超大规模的预训练模型,并且能够自动进行内容生成。同时我们在未来可以构建一个数字人的系统,它能够自动的在系统中,能够生成相关的东西,能够做得像人一样的数字人。

第三个,认知推理。让计算机有推理、有逻辑的能力。

这时候说起来比较虚,用人的认知来通俗理解一下。

人的认知有两个系统,一个叫系统1,一个叫系统2。

系统1就是计算机做的匹配。

你说,清华大学在哪?它便立刻匹配出来北京。

但如果你要是问,清华大学在全球计算机里到底排第几?以及为什么是这个名次?

这时候计算机就回答不了,这就需要一定的逻辑推理,也就是系统2所做的事情。

当前所有的深度学习都是做系统1,解决了系统1问题——直觉认知,而不是逻辑认知。

因此在未来,我们要做更多关于系统2的事情。

从脑科学来看,相对现在做的事情有两个最大的不同,第一,就是记忆,第二就是认知推理。

记忆是通过海马体实现,认知是前额叶来实现。这两个系统非常关键,如何实现呢?

我们看记忆模型,巴德利记忆模型分三层,短期记忆就是一个超级大的大数据模型。

在大数据模型中,我们怎么把大数据模型中有些信息变成一个长期记忆变成我们知识,这就是记忆模型要做的事情。

那认知模型呢?我们构建了一个面向认知的AI架构。

这个框架左边是一个查询接口,这是输入,也可以说成是用户端。

中间是一个超大规模的预训练模型,然后是一个记忆模型。

记忆模型通过试错、蒸馏,把一些信息变成一个长期记忆存在长期记忆模型中。

长期记忆模型中会做无意识的探测,也会做很多自我定义和条理的逻辑,并且做一些认知的推理。

在这样的基础上我们构建一个平台。最终目标是打造一个知识和认知推理双轮驱动的一个框架。底层是分布式的存储和管理,中间是推理、决策、预测,再上面是提供各式各样的API。

好,我今天大概就把我们的理念和想法给大家介绍一下,如果大家有兴趣的话,可以查阅我们更多的信息。

谢谢大家!

2
点赞
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与华威派无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非华威派)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:2443165046 邮箱:info@goodmaoning.com
关于作者
天泰悠然(普通会员)
点击领取今天的签到奖励!
签到排行
2
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索