作者:京东科技 何雨航
零、引言如何充分发挥ChatGPT潜能,已是众多企业关注的焦点。但是,这种变化对员工来说未必是好事情。IBM计划用AI替代7800个工作岗位,游戏公司使用MidJourney削减原画师人数......此类新闻屡见不鲜。理解并应用这项新技术,对于职场人来说重要性与日俱增。
一、GPT模型原理理解原理是有效应用的第一步。ChatGPT是基于GPT模型的AI聊天产品,后文均简称为GPT。
从技术上看,GPT是一种基于Transformer架构的大语言模型(LLM)。GPT这个名字,实际上是"Generative Pre-trained Transformer"的缩写,中文意为“生成式预训练变换器”。
1.大模型和传统AI的区别是什么?传统AI模型针对特定目标训练,因此只能处理特定问题。例如,很会下棋的AlphaGO。
而自然语言处理(NLP)试图更进一步,解决用户更为通用的问题。可以分为两个关键步骤:自然语言理解(NLU)和自然语言生成(NLG)。
大型语言模型(如GPT)采用了一种截然不同的策略,实现了NLG层的统一。秉持着“大力出奇迹”的理念,将海量知识融入到一个统一的模型中,而不针对每个特定任务分别训练模型,使AI解决多类型问题的能力大大加强。
1.文字处理类此类应用主要有三种用法:
①文章提炼
可以输入文章段落,要求提取段落主旨。但受token数限制,难以总结整篇文章。也可要求生成短标题、副标题等。在提示词中预留【案例】槽位,让用户输入一些参考案例,GPT便可以学习相应的风格,进行针对性的输出。
②润色/改写
可用于文章的初步润色,能够消除错别字、错误标点等。改写则可以转换文章风格,如更改成小红书风格等。
③文章扩写
在有大纲基础上,分段进行文章扩写。受token限制,如一次要求过长,输出的扩写难以做到前后呼应。ChatGPT本身不会产生新知识,文章扩写难以写出深刻见地,只能生成口水文。通过给定关键词和案例,要求生成有规律的短文案,是应用其文章扩写能力的有效方法。
2.翻译GPT模型训练时学习了大量语言,具备跨语言能力。无论用何种语言与其沟通,只要理解意图,分析问题能力是不区分语言的。因此,翻译对GPT来说很轻松。当然也仅限基本翻译,不要指望其能翻译的“信、达、雅”。
3.情感分析GPT能理解文字背后的用户情绪。例如,在客服模块引入GPT能力,基于用户语音和文字快速判断情绪状况,提前识别潜在客诉,在情绪爆发前进行有效安抚。
第三层:文本能力在本层,GPT的能力已经超越了语言,它通过大量学习,凡是与文本相关的任务,都能胜任。它甚至具备真正的学习能力,使用few-shot技巧,能解决训练数据中不存在的问题。本层的应用范围极广,将迸发出大量极具创造力的产品。我在这里仅举一些典型例子。
1.写代码ChatGPT能编写SQL、Python、Java等代码,并帮忙查找代码BUG。与撰写文章的原因类似,不能要求其编写过长的代码。
2.写提示词要求GPT创作提示词是与其他AI联动的简单方式。例如,要求GPT为midjourney撰写提示词,已成为非常主流的做法。
3.数据分析ChatGPT可以直接进行数据分析,或与EXCEL配合进行数据分析。它将数据分析操作成本降至极低,大幅提升了数据分析的效率。
第四层:推理能力在前几层中,我们已经见识了GPT的推理能力。以GPT的推理能力替代手动点击操作流,将带来B端和C端的产品设计的颠覆式变化。个人认为,短期内B端的机会大于C端。经过互联网20年的发展,C端用户的主要需求已基本得到满足,颠覆C端用户的操作路径会带来较大的学习成本。而B端则有很大的发挥空间,这里将其分为三个阶段:
1.自动化工作流串联利用ChatGPT理解人类意图的能力,结合langChain技术将提示词和公司内各项工作的网页链接整合。员工无需寻找各种链接,在需要执行相关操作时,会自动跳转到相应页面,进行下一步操作。以ChatGPT为智慧中枢,真正实现将B端各类操作有机整合。下图为设计思路的示例。
2.AI辅助决策以第一个阶段为基础,将对应页面的部分功能与GPT联动。这样,在员工执行操作时,部分功能可以由AI实现,成倍提升效率。微软Copilot正是这类产品的代表,比如可以实现在Excel中说明自己想要进行的数据分析,无需寻找相关公式,数据分析就自动做好了。
3.全自动AI工作流本阶段目前还处于演示层面,呈现了未来的愿景。如前文所述,GPT很难解决特定领域的细节问题,除非针对某个场景进行大量的微调与私有数据部署。AutoGPT、AgentGPT都属于此类。
第五层:国产大模型AI技术是科学而非神学,大模型的原理也不是秘密。美国能做到,我国不仅能,而且有必要。只要训练数据质量达标,模型参数突破千亿便具备推理能力,突破八千亿可与GPT-4匹敌。采用大量中文语料和中文微调,我国必将拥有符合本国文化背景、价值观的大模型。
然而,路漫漫其修远兮,困难也是极多的,如:训练成本极高、训练数据质量要求高、模型优化复杂、马太效应明显等。因此,预计在未来五年内,中国最多只会有3家知名大模型服务商。
大模型是AI时代的基础设施,大部分公司选择直接应用,直接获取商业价值。在这个大背景下,愿意投身自有大模型的公司就更加难能可贵了。在此,我谨代表个人向那些勇于投身于自有大模型建设的国内企业表示敬意。
四、总结总的来看,ChatGPT是一款跨时代的产品。不同层面对GPT技术的应用,体现出了一些共性的机会。我总结了三项未来具有巨大价值的能力。
1.问题分解技术鉴于GPT回复的限制在于最多只能基于32,000个tokens,因此有效地将问题分解成子问题并交由GPT处理显得尤为关键。未来的工作模式可能将问题拆解为子问题,再组装子问题的解决方案。在具体实施时,还需要对子问题的难度进行判断,有些问题可以交给一些小模型处理,这样就可以有效的控制应用成本。
2.三种调优方法想要让GPT在多个层面上发挥特定的作用,主要有三种交互方式,成本从低到高分别为:
调优方法
优势
缺点
提示词优化
提升效果明显成本极低
占用token多,影响上下文关联长度
embedding
扩展GPT知识调优成本较低
GPT并非真的理解了相关的内容,而是在遇到相关问题时,能够基于给定的知识库回答。
微调技术
搭建真正的私有模型,GPT能理解相关的问题。
成本较高,需要大量的“问答对”,训练过程非常消耗token。
①提示词优化
通过探索找到最优提示词模板,预留特定槽位以供用户输入。仅通过提示词优化就能实现广泛功能,许多基于GPT的产品,其底层就是基于特定提示词的包装。好的提示词需包含角色、背景、GPT需执行的任务、输出标准等。根据业界的研究,好的提示词能使GPT3.5结果的可用性由30%飙升至80%以上。提示词优化毫无疑问是这三种方法中最重要的。
②embedding
这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答。
③微调(finetune)
通过输入大量问答,真正教会GPT如何回答某类问题,成本较前两者更高。优势在于将提示词的短期记忆转化为私有模型的长期记忆,从而释放宝贵的Token以完善提示词其他细节。
以上三种方式并不冲突,在工程实践中往往互相配合,特别是前两种。
3.私有数据积累私有数据集的价值得到进一步提升,各行业可基于此对GPT进行二次包装,解决特定领域问题。建议使用微软Azure提供的GPT接口,搭建带有私有数据的大语言模型产品。因微软面向B端的GPT服务为独立部署,不会将私有数据用于大模型训练,这样可以有效保护私有数据。毕竟私有数据一旦公开,价值将大打折扣。
凭借以上几项能力加持,大语言模型可以充分释放在解决依赖电脑的重复性劳动的生产力。我将下一个时代(3年内)的业务运转模式总结如下图:
企业会根据三大能力衍生出三大类角色:
①问题分解者
这类角色很清楚大语言模型能力的边界,能够将一个业务问题有效的分解为GPT能处理的子问题,并能根据问题结果,将子问题进行拼装。
②提示工程师
这类角色深谙与GPT沟通之道,能够根据不同的问题类型,给出有效的提示词模板,极大提升GPT的输出质量。
③知识拥有者
这类角色有大量的行业knowhow,并且能够将知识进行结构化,传授给GPT。对应现在的领域专家。
在这种模式的推动下,GPT将会成为企业提效的重要帮手,可以解决大量重复劳动,可以提供有价值的参考。但人的主观能动性仍起决定性作用。
五、写在最后即使以GPT-4为代表的AI技术保持当前的水平,带来的效率提升已经令人震惊,更遑论其仍以飞快的速度进化。从技术革命的发展史来看,一项大幅度提效的新技术出现,往往先惠及B端,而后才慢慢在C端开始释放巨大的价值。这是由企业对效率天然的敏感性所决定的,而改变C用户的习惯需要大量学习成本与场景挖掘,滞后效应较强。举三个例子大家就懂了:
1. 回顾第一次工业革命,内燃机的出现先导致了纺织女工的大量失业,而后才逐渐找到了各种C端场景,推动了社会生产力的大幅度上升。
2. ChatGPT可以更快的生成口水文,但是C端用户对阅读的诉求是没有增加的。对于营销号公司来说,效率提升了,所需要的人变少了。
3. MidJourney可以快速生成抱枕的图案,但是C端用户并不会购买更多的抱枕,那么需要作图的人员就少了。
一场信息化企业的內效革命就要到来了,依靠电脑的重复劳动将会消失,因为大模型最擅长学这个了。正如我文初所举得案例一样,像IBM公司缩减7800个编制的案例,只会发生的越来越频繁。
AI时代真的已经到来,每个岗位都需要思考,如何让AI成为工作上的伙伴。
相关文章
猜你喜欢