> 自媒体 > 科技 > 刷新中文命名实体识别SOTA,华为云论文入选国际顶会NAACL 2022
刷新中文命名实体识别SOTA,华为云论文入选国际顶会NAACL 2022
转载
来源:华为云
2022-04-14
526
管理

2022年4月7日,自然语言处理领域国际顶级学术会议NAACL 2022(The North American Chapter of the Association for Computational Linguistics)公布论文入选名单,华为云语音语义创新Lab多名研究者撰写的信息抽取论文《Delving Deep into Regularity: A Simple but Effective Method for Chinese Named Entity Recognition》被NAACL 2022 Findings接收,这代表着中文命名实体识别的最优结果 (SOTA) 被进一步刷新,更准确有效地实体识别将推动下游自然语言处理任务的进一步发展。

NAACL由国际计算语言学学会(ACL)主办,与ACL、EMNLP并称NLP领域的三大顶会,是人工智能的重要研究阵地。NAACL的录用十分严格,根据往年评选结果,只有不到30%的论文被接收。

作为自然语言处理中最经典、最基础的任务,命名实体识别一直受到广泛的关注与研究。近年来,中文命名实体识别任务上取得了明显进展,很多新的方法和框架被陆续提出,但往往忽略了实体词的内部组成。

对于中文命名实体而言,很多类别的实体都具有很强的命名规律性。比如说,以“公司”或者“银行”结尾的实体词,通常属于组织机构这一实体类别。因此,在《Delving Deep into Regularity: A Simple but Effective Method for Chinese Named Entity Recognition》中,华为云语音语义创新Lab的研究者提出用简单有效、规律性引导的识别网络来探究中文实体词中的规律性。

刷新中文命名实体识别SOTA,华为云论文入选国际顶会NAACL 2022

图1 规律性引导的识别网络

如图1,华为云研究者首先利用注意力机制显著地提取每个文本段的规律性,进而将这种表征文本内部的规律性的特征和通过Biaffine Attention提取的文本段特征结合起来,进行后续的实体识别。为了避免由于过度关注实体内部规律性导致的实体边界识别偏差,研究者们另外设计了一个与规则无关的模块来帮助模型更准确地识别实体的边界。

刷新中文命名实体识别SOTA,华为云论文入选国际顶会NAACL 2022

图2 中文数据集上的实验结果

华为云研究者提出的规律性引导的识别网络,如图2,在MSRA, Ontonotes4.0, 和Ontonotes5.0三个大规模中文实体识别数据集上都取得了SOTA的结果。同时,本文提出的方法不依赖于外部词典信息,并且F1值超过了目前所有使用词典信息的方法的结果。这充分说明通过研究实体词的内部规律性,研究者们提出了一个非常有效的网络结构。

不止在信息抽取方面,华为云语音语义创新Lab秉承开放创新、勇于探索、持续突破关键技术的精神,面向行业客户提供领先的语音语义AI能力,结合大量行业知识,推出知识计算等行业解决方案,打造业界一流的知识计算竞争力。截至目前,已在政务、金融、石油等多个行业进行了落地和实践,帮助客户实现AI落地与智能升级。

查看相关论文:
https://arxiv.org/pdf/2204.05544.pdf


0
点赞
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与华威派无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非华威派)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:2443165046 邮箱:info@goodmaoning.com
关于作者
晗晗(普通会员)
点击领取今天的签到奖励!
签到排行
0
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索