机器之心编译
编辑:陈萍
这是对「LLM for Science」一次有希望的探索。
对于身处科研领域的人来说,或多或少的都听到过 P/NP 问题,该问题被克雷数学研究所收录在千禧年大奖难题中,里面有七大难题,大家熟知的庞加莱猜想、黎曼假设等都包含在内。而且这个组织还为能够攻克该问题的研究人员提供了上百万美元的奖金悬赏。
P/NP 问题最早在 1971 年由史提芬・古克(Stephen A. Cook)和列昂尼德・列文分别提出。多年以来,很多人都投入到该问题的研究中。但有人表示 P=NP 的解决保守估计可能还需要 100 年的时间。
近年来,不乏有人声称证明了 P 等于或者不等于 NP,但证明过程都存在错误。到目前为止,还没有人能够回答这个问题。
现在,随着 AI 技术的发展,尤其是这一年来大语言模型的快速迭代,有研究开始尝试使用 AI 技术来解决这些世界难题。
本文,来自微软研究院、北京大学、北航等机构的研究者提出使用大语言模型 (LLM) 来增强和加速对 P versus NP 问题的研究。
具体来说,本文提出了一个能使 LLM 进行深入思考并解决复杂问题的通用框架:苏格拉底推理(Socratic reasoning)。基于该框架,LLM 可以进行递归地发现、解决并整合问题,同时还能进行自我评估和完善。
本文对 P vs. NP 问题的试点研究表明,GPT-4 成功地生成了一个证明模式,并在 97 轮对话回合中进行了严格的推理,得出「P≠ NP」的结论,这与(Xu 和 Zhou,2023)结论一致 。
相关文章
猜你喜欢