> 自媒体 > AI人工智能 > 医疗版ChatGPT直播评测!治疗方案与真人医生96%一致
医疗版ChatGPT直播评测!治疗方案与真人医生96%一致
来源:浙江科普
2023-08-02
197
管理

国内首个医疗大模型,已经在“接诊”患者了。

这样一来AI医生与真人医生之间互不干涉,且条件基本一致,双方就能给出独立的判断。

甚至在诊后,MedGPT还会在患者收到药品后进行用药指导与管理、智能随访复诊、康复指导等智能化疾病管理工作。目前它基本覆盖ICD10的60%疾病病种,这意味着常见病症都能Hold住~还能7*24小时不间断干活,一旦规模化落地辅助医生诊疗,能大大提升医疗效率,对于分级诊疗,医疗资源普惠,都能够发挥一定作用。

首个医疗大模型如何炼成?

医疗向来是AI落地中专业性最强、壁垒性最高,对安全要求最高的领域之一。以往用户们会习惯性使用信息搜索来帮助自己做一些初步的疾病判断,但信息鱼龙混杂,普通用户缺乏专业知识无法进行有效筛选,最终导致往往会收效甚微。但又因为这个领域牵涉到每个人的生命健康,市场需求和社会价值一直很大。

因此自ChatGPT诞生以来,关于何时能在医疗领域“上岗”发挥作用,就备受产学研各界专家的关注。诚如“弱智吧”成为检验各个通用大模型能力的Benchmark一样,各个大模型的医疗能力也在美国执业医师资格考试USMLE中摩拳擦掌。

早些时候, 哈佛大学教授曾亲自下场测试ChatGPT辅助诊断的表现。结果显示,ChatGPT在45个案例中39个诊断正确,并为30个案例提供适当的分诊建议。这样的表现已经超过现有机器诊断水平,接近医生。另一个代表,谷歌健康团队打造的Med-PaLM 2,它能回答各种医学问题,据称是首个在美国医疗执照考试中达到专家水平的大语言模型。

这对企业来说,不单只是算法、算力和数据的考验,而是一整套系统工程性难题。

既然如此,作为国内首个医疗大模型MedGPT,又是如何做到的呢?

简单总结:专业大模型,以及多种准确性机制保架护航。

首先,一上来就打造医疗大模型。此前专业大模型的思路是,先打造一个大模型,再利用专业数据做监督微调。但MedGPT直接是以医疗数据预训练、微调以及超100名医生参与RLHF机制。

至于在AI方面,这家公司很早就开始关注并进行谋划:早在2017年医联就建立起医疗大数据结构化能力;2018年就将NLP、CV等AI技术应用落地,比如智能体液检测、智能分诊、口腔影像识别等场景。2019年还推出针对单病种/分阶段的AI诊疗模型,曾联手多家医院及机构,创建亚洲首个多发性硬化症领域的早筛AI模型,帮助患者提前1-3年提升多发性硬化症的风险预测和防控能力。这些前期在AI领域的摸索以及长期的医学与前沿技术的融合,成为医联能率先在行业内推出医疗大模型并应用的基础,可以说这一切绝非偶然。

让我们再往深看一步,为了保证医疗大模型的准确性和一致性,医联从模型到实际应用同样做了不少工作。包括模型算法的一致性校验机制、多维度诊疗评测机制,以及基于专家评议的真实世界医生一致对标机制。

比如,在为患者输出正式答案前,会先经过临床医学规则器的校验。还有招募真实医生在电脑前判断,然后将两者结果交给专家委员会评议,以此来对标真实医生。

基于这样的方法论,医联团队率先为专业大模型的打造在行业中打了个样。

医疗AI2.0大幕拉开

最后回到MedGPT公开评测这件事情本身,也带来了大模型发展进程中的三点趋势。

第一、医疗AI2.0大幕已经拉开,系统复杂性问题将会得到解决。

以大模型为代表的AI2.0时代的到来——对话即入口,让所有的应用场景都得到了重新定义。被AI所辐射的千行百业也深处于变革之中。

而医联大模型MedGPT一个月就进入到真实患者全流程测试阶段。在此之后,根据数据飞轮迭代大模型,落地速度只会越来越快。

或许很快,医疗AI2.0就会惠及每个人。

#ChatGPT 应用##科技快讯##所见所得,都很科学#

来源|量子位

1
点赞
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与华威派无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非华威派)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:2443165046 邮箱:info@goodmaoning.com
关于作者
冷冷的太阳(普通会员)
点击领取今天的签到奖励!
签到排行
1
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索