机器之心报道
编辑:蛋酱、杜伟、小舟
是时候重新审视这个「无所不能的」模型了!
GPT-3,「出道即巅峰」界的代表。
2020 年 5 月,OpenAI 高调推出了一款具有 1750 亿参数的自回归语言模型「GPT-3」,在人工智能领域掀起了一阵巨浪。从参数量上看,它比当时全球最大的深度学习模型 Turing NLP 大上十倍,从功能上看,它可以答题、翻译、写文章,还带有一些数学计算的能力。
这让人浮想联翩:「莫非,真正的 AI 要来了吗?」
无所不能,还是媒体的过誉?
顾名思义,GPT-3 是 OpenAI 发布的自动补全工具第三代,这个项目经历了多年的发展,一直代表着 AI 文本生成方面的最新方向。从许多方面的特征看,这些进步类似于 2012 年以来 AI 图像方面的飞跃——在那之后,人工智能的新一轮浪潮汹涌而来。
和所有深度学习系统一样,GPT-3 也在从数据中寻找模式。为了简化,该程序已经对庞大的文本集进行了训练。这些规则对于人类来说是未知的。但是它们被存储为数十亿个 GPT-3 的神经网络的不同节点之间的加权连接。重要的是,在这个过程中,没有涉及到人工输入:该程序在没有任何指导的情况下找出了模式,然后将其用于完成文本提示。
GPT-3 的突出特点是它的运行规模和其惊人的能够自动完成的任务。
第一代 GPT 发布于 2018 年,包含 1.17 亿个参数。2019 年发布的 GPT-2 包含 15 亿个参数。而 GPT-3 拥有 1750 亿个参数,是其前身的 100 多倍,是同类程序的 10 多倍。
自从 GPT-3 推出以来, OpenAI 向社区开放了商业 API,鼓励大家使用 GPT-3 尝试更多的实验。目前是以内测版的形式向用户出售,功能包括简单的文本输入输出界面等。
所以我们才看到了这些眼花缭乱的案例:
基于问题的搜索引擎
鉴于 GPT-3 已经接受过大量数字书籍资料的训练,所以它吸收了很多历史人物的观点与知识。这意味着你可以像和哲学家聊天一样,开启与 GPT-3 的对话。
当然,你和图灵、香农的对话,也许会被哈利波特突然打断……
基于文本描述生成代码
文本样式转换
图源:推特用户 @Francis Jervis。
GPT-3 可将某种样式编写的输入文本,更改为另一种样式,不同文体之间自由切换。
绘图助手
除了生成代码,你也可以让 GPT-3 帮你画图、
图像补全
早在 GPT-2 时代,模型的自动补全图像功能就已经实现。如下图所示,最右一列是原始图片,最左侧是输入的半张图片,中间的四列是 GPT-2 自动补全的图片。
GPT-3 当然也能做到这一点,最令人印象深刻的是,它未曾接受过什么特定训练,不再需要微调,就能够完成这些任务。这也说明了其所具备的模型灵活性。
总体来看,GPT-3 做到了一点:「用过的人都说好」,这表示它已经接近封神的地位。
深度学习之父 Geoffrey Hinton 这样评价:「如果以 GPT-3 的出色性能推算未来,生命、宇宙和万物的答案也不过是 4.398 万亿个参数。」
输出的文本存在偏见
最后,GPT-3 还存在一个严重问题,那就是它的输出存在偏见。
英伟达机器学习研究主管 Anima Anandkumar 教授指出,GPT-3 的部分训练是在 Reddit 过滤后的数据上完成的,基于这些数据构建的模型会生成「偏见性极大的」文本。
Anima Anandkumar
仅以之前的 GPT-2 模型为例,在 2019 年的一篇论文《The Woman Worked as a Babysitter: On Biases in Language Generation》中,GPT-2 模型被要求补全「这个人在当地沃尔玛从事汽车推销员工作」后的句子时,它输出了各种冒犯黑人或女性的句子,如「黑人干皮条客的勾当长达 15 年」,或者「这名女子以 Hariya 的名头做着娼妓的生意」。
GPT-3 有时也会表现出类似的偏见。
针对 GPT-2 和 GPT-3 模型在输出文本时固有的偏见,AI 领域的一些人认为它只是在复制训练数据中人类的偏见而已,而且这些带有偏见的句子可以删除。但是,带有偏见的输出可能导致其更加不可靠的结果,进而引发更大的问题。
究其根本原因,输出偏见是 GPT-3 在缺乏人工监督或规则的情况下不加选择地处理的结果。但是,由于整理数据需要耗费大量的人力资源,因而无法实现实际操作。这就不可避免地造成了 GPT-3 的偏见。
参考链接:https://www.theverge.com/21346343/gpt-3-explainer-openai-examples-errors-agi-potential
相关文章
猜你喜欢