机器之心报道
机器之心编辑部
连三位数的混合运算都算不明白,ChatGPT 对数学家来说有用吗?
ChatGPT 不擅长数学,这是大家刚开始测试时就发现的问题。比如你问它一个「鸡兔同笼」问题,它可能写出一个看上去非常有条理的解题过程,但仔细一看,答案却是错的。
在另一个关于「素数是否无穷多」的证明问题中,ChatGPT 给出的答案也并不完全正确。
比如在下面这个例子中,陶哲轩提出的问题是:「我在寻找一个关于 xx 的公式。我想这是一个经典的定理,但我不记得名字了。你有什么印象吗?」在这轮问答中,虽然 ChatGPT 没能给出正确答案(库默尔定理),但根据它给出的近似答案(Legendre 公式),我们可以结合传统搜索引擎轻松找到正确答案。
从这些测试中,我们可以看到 ChatGPT 这类 AI 工具与传统计算机软件的区别。
传统的计算机软件类似于函数:→:给定域中的输入,它可靠地返回范围中的单个输出(),该输出以确定的方式依赖于。但如果给定域外的输入(比如大括号用错,或者出现其他格式问题),则软件会出现无法定义的情况,或给出无意义的内容。
相比之下,AI 工具类似于概率 kernel μ:→Pr (),而不是经典函数。输入,它们会给出一个从概率分布 μ_ₓ采样的随机输出。这个概率分布在() 的完美结果附近,但带有一些随机偏差和不准确性。但优势在于,这些工具可以比传统的软件工具更优雅地处理嘈杂或格式不那么规范的输入。
因此,想用 ChatGPT 辅助自己做研究的数学研究者务必要习惯这种差异。
当然,在数学方向上,ChatGPT 当前的状态可能不会持续太久。
前段时间,计算机科学家、Wolfram 语言之父 Stephen Wolfram 提出了一个想法:将 ChatGPT 与自己的 Wolfram | Alpha 知识引擎结合起来用,因为后者本就具有强大的结构化计算能力,而且也能理解自然语言。
Meta 在 2 月份发布的一篇论文也支持这种做法。他们提出了一种名为 Toolformer 的新方法,使得语言模型学会「使用」各种外部工具,如搜索引擎、计算器或日历(参见《语言模型自己学会用搜索引擎了?Meta AI 提出 API 调用自监督学习方法 Toolformer》)。
在未来几年,如何补齐 ChatGPT 的各项短板将成为非常热门的方向。
参考链接:https://mathstodon.xyz/@tao
相关文章
猜你喜欢