Drive Language 基于毫末的 CSS 场景库理论,将驾驶空间进行离散化处理,每一个 Token 都表征场景的一小部分,相当于许多个可能在未来出现的平行宇宙,最终完成自车的决策规控、障碍物预测以及决策逻辑链的输出等任务。截至目前,毫末从真实驾驶场景库中提取的token序列,规模达到 50 万个。
有了 Drive Language,毫末就可以用人类驾驶的数据对模型进行预训练。
首先,在预训练阶段通过引入量产驾驶数据,训练初始模型,再通过引入驾驶接管 Clips 数据完成反馈模型(Reward Model)的训练,然后再通过强化学习的方式,使用反馈模型去不断优化迭代初始模型,形成对自动驾驶认知决策模型的持续优化。
同时,DriveGPT 雪湖·海若会根据输入端的提示语以及毫末 CSS 自动驾驶场景库的决策样本去训练模型,让模型学习推理关系,从而将完整驾驶策略拆分为自动驾驶场景的动态识别过程,完成可理解、可解释的推理逻辑链生成。
毫末智行 CEO 顾维灏表示,毫末 DriveGPT 雪湖·海若通过引入驾驶数据建立 RLHF(人类反馈强化学习)技术,对自动驾驶认知决策模型进行持续优化。据毫末方面的说法,在 RLHF 的加持下,Hard Case 通过率提升了 48%。
顾维灏举例称,在泊车场景下,毫末将鱼眼相机也引入到视觉 BEV 的感知框架当中,鱼眼图像通过 2D backbone 提取出视觉特征,经过空间转换映射至 BEV 空间,并在该空间下对于障碍物的轮廓边界进行识别和测量,目前可做到在 15 米范围内达测量精度 30cm,2 米内精度高于 10cm。
除了用自监督大模型练内功,毫末还公开了在纯视觉三维重建方面的一些进展。
毫末对 NeRF 做了升级,将视觉感知结果转化为可用于 BEV 模型训练的带 3D 标注的真值数据,目前可以做到重建误差小于 10cm。
单趟重建有时会受到遮挡的影响,不能完整地还原三维空间,因此毫末尝试了多趟重建的方式——即将同一地点不同车辆在不同时间经过的数据合并做多趟重建,由此提升场景还原度,重建效率可提升 5 倍。
重建之后,MANA 可以编辑场景合成难以收集的 Corner Case。毫末表示,近期训练了一个可以在静态场景做虚拟动态物体编辑的模型,可以控制虚拟物体在场景中按照设定的轨迹运动,由此合成各种 hardcase,例如近距离回车,行人、电动车交互行为等。
在 AI DAY 上,毫末表示其城市 NOH 已在北京、保定、上海等城市开启泛化测试,即将量产上车。张凯表示,到2024 年,毫末城市 NOH 将有序落地 100 城。
一年之内,从三座城市扩张至百城,毫末给出的目标可以说十分激进。
截至目前,毫末三代乘用车产品搭载车型近 20 款,毫末辅助驾驶用户行驶里程突破4000万公里,HPilot2.0 日均里程使用率 12.6%。
毫末智行透露,目前已与 3 家主机厂(包括长城)签署定点合同,相关项目正在交付中。
结合毫末往届 AI DAY 的动态来看,从发布中国首个数据智能体系 MANA,到建设智算中心雪湖·绿洲,再在其基础上训练出参数规模达 1200 亿作为 DriveGPT 雪湖·海若模型,毫末的闭环思维始终贯彻其技术始末,并逐渐形成数据驱动的闭环。
正如毫末所言,2023 年将是智能驾驶冲刺之年、大考之年。这对毫末来说,这也是长久技术布局走向落地应用的关键时期;毕竟,毫末要在 2025 年实现城市 NOH 落地 100 城,这并不是一个简单的事情。
(本文首发钛媒体App,作者|肖漫,编辑|张敏)
相关文章
猜你喜欢